
Linear model selection and regularization

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University



Linear Model Selection and Regularization
 Recall the linear model

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝 + 𝜖𝜖

 In the lectures that follow, we consider some approaches for extending the 
linear model framework. In the lectures covering Chapter 7 of the text, we 
generalize the linear model in order to accommodate non-linear, but still 
additive, relationships

 In the lectures covering Chapter 8 we consider even more general non-linear 
models
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In praise of linear models!
 Despite its simplicity, the linear model has distinct advantages in terms of its 

interpretability and often shows good predictive performance
 Hence we discuss in this lecture some ways in which the simple linear model 

can be improved, by replacing ordinary least squares fitting with some 
alternative fitting procedures
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Why consider alternatives to least squares?
1. Prediction Accuracy: especially when 𝑝𝑝 > 𝑛𝑛 or 𝑝𝑝 ≈ 𝑛𝑛, to control the variance
2. Model Interpretability: By removing irrelevant features - that is, by setting 

the corresponding coefficient estimates to zero - we can obtain a model that 
is more easily interpreted. We will present some approaches for 
automatically performing feature selection
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Three classes of methods
1. Subset Selection: We identify a subset of the 𝑝𝑝 predictors that we believe to 

be related to the response. We then fit a model using least squares on the 
reduced set of variables

2. Shrinkage: We fit a model involving all 𝑝𝑝 predictors, but the estimated 
coefficients are shrunken towards zero relative to the least squares estimates. 
This shrinkage (also known as regularization) has the effect of reducing 
variance and can also perform variable selection

3. Dimension Reduction: We project the 𝑝𝑝 predictors into a 𝑀𝑀-dimensional 
subspace, where 𝑀𝑀 < 𝑝𝑝. This is achieved by computing 𝑀𝑀 different linear 
combinations, or projections, of the variables. Then these 𝑀𝑀 projections are 
used as predictors to fit a linear regression model by least squares
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Subset Selection
Best subset and stepwise model selection procedures

1. Let 𝑀𝑀0 denote the null model, which contains no predictors. This model 
simply predicts the sample mean for each observation

2. For 𝑘𝑘 = 1,2, … 𝑝𝑝: 
a) Fit all 𝑝𝑝

𝑘𝑘 models that contain exactly 𝑘𝑘 predictors
b) Pick the best among these 𝑝𝑝

𝑘𝑘 models, and call it 𝑀𝑀𝑘𝑘. Here best is defined as having the 
smallest RSS, or equivalently largest 𝑅𝑅2

3. Select a single best model from among 𝑀𝑀0, … ,𝑀𝑀𝑝𝑝 using cross-validated 
prediction error, 𝐶𝐶𝑝𝑝 (AIC), BIC, or adjusted 𝑅𝑅2
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Example- Credit data set
 For each possible model containing a subset of the ten predictors in the Credit 

data set, the RSS and 𝑅𝑅2 are displayed. The red frontier tracks the best model 
for a given number of predictors, according to RSS and 𝑅𝑅2. Though the data 
set contains only ten predictors, the x-axis ranges from 1 to 11, since one of the 
variables is categorical and takes on three values, leading to the creation of two 
dummy variables
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Extensions to other models
 Although we have presented best subset selection here for least squares 

regression, the same ideas apply to other types of models, such as logistic 
regression

 The deviance - negative two times the maximized log-likelihood - plays the 
role of RSS for a broader class of models
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Stepwise Selection
 For computational reasons, best subset selection cannot be applied with very 

large 𝑝𝑝
 Best subset selection may also suffer from statistical problems when 𝑝𝑝 is large: 

larger the search space, the higher the chance of finding models that look good 
on the training data, even though they might not have any predictive power on 
future data
 Thus an enormous search space can lead to overfitting and high variance of the coefficient 

estimates
 For both of these reasons, stepwise methods, which explore a far more 

restricted set of models, are attractive alternatives to best subset selection
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Forward Stepwise Selection
 Forward stepwise selection begins with a model containing no predictors, and 

then adds predictors to the model, one-at-a-time, until all of the predictors are 
in the model

 In particular, at each step the variable that gives the greatest additional 
improvement to the fit is added to the model
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In Detail
Forward Stepwise Selection

1. Let 𝑀𝑀0 denote the null model, which contains no predictors
2. For 𝑘𝑘 = 0, … 𝑝𝑝 − 1: 

a) Consider all 𝑝𝑝 − 𝑘𝑘 models that augment the predictors in 𝑀𝑀𝑘𝑘 with one additional 
predictor

b) Choose the best among these 𝑝𝑝 − 𝑘𝑘 models, and call it 𝑀𝑀𝑘𝑘+1. Here best is defined as 
having the smallest RSS, or equivalently largest 𝑅𝑅2

3. Select a single best model from among 𝑀𝑀0, … ,𝑀𝑀𝑝𝑝 using cross-validated 
prediction error, 𝐶𝐶𝑝𝑝 (AIC), BIC, or adjusted 𝑅𝑅2

 Though forward stepwise selection considers 𝑝𝑝(𝑝𝑝 + 1)/2 + 1 models, it 
performs a guided search over model space, and so the effective model space 
considered contains substantially more than 𝑝𝑝(𝑝𝑝 + 1)/2 + 1 models
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More on Forward Stepwise Selection
 Computational advantage over best subset selection is clear
 It is not guaranteed to find the best possible model out of all 2𝑝𝑝 models 

containing subsets of the 𝑝𝑝 predictors
 For instance, suppose that in a given data set with 𝑝𝑝 = 3 predictors, the best possible one-

variable model contains 𝑋𝑋1, and the best possible two-variable model instead contains 𝑋𝑋2
and 𝑋𝑋3. Then forward stepwise selection will fail to select the best possible two-variable 
model, because 𝑀𝑀1 will contain 𝑋𝑋1, so 𝑀𝑀2 must also contain 𝑋𝑋1 together with one 
additional variable

 For high dimensional data with 𝑝𝑝 > 𝑛𝑛, the forward selection can still be 
applied by considering only 𝑀𝑀1, … ,𝑀𝑀𝑛𝑛, since each submodel fit with least 
square will not have unique solution for 𝑝𝑝 > 𝑛𝑛
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Credit data example
 The first four selected models for best subset selection and forward stepwise 

selection on the Credit data set. The first three models are identical but the 
fourth models differ
 In this example, there is actually not much difference between the three and four-variable 

models in terms of RSS, so either of the four-variable models will likely be adequate
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Backward Stepwise Selection
 Like forward stepwise selection, backward stepwise selection provides an 

efficient alternative to best subset selection
 However, unlike forward stepwise selection, it begins with the full least 

squares model containing all 𝑝𝑝 predictors, and then iteratively removes the 
least useful predictor, one-at-a-time
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Backward Stepwise Selection: details
Backward Stepwise Selection

1. Let 𝑀𝑀𝑝𝑝 denote the full model, which contains all 𝑝𝑝 predictors. 
2. For 𝑘𝑘 = 𝑝𝑝, 𝑝𝑝 − 1, … , 1: 

a) Consider all 𝑘𝑘 models that contain all but one of the predictors in 𝑀𝑀𝑘𝑘 , for a total of 𝑘𝑘 −
1 predictors

b) Choose the best among these 𝑘𝑘 models, and call it 𝑀𝑀𝑘𝑘−1. Here best is defined as having 
the smallest RSS, or equivalently largest 𝑅𝑅2

3. Select a single best model from among 𝑀𝑀0, … ,𝑀𝑀𝑝𝑝 using cross-validated 
prediction error, 𝐶𝐶𝑝𝑝 (AIC), BIC, or adjusted 𝑅𝑅2
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More on Backward Stepwise Selection
 Like forward stepwise selection, the backward selection approach searches 

through only 1 + 𝑝𝑝(𝑝𝑝 + 1)/2 models, and so can be applied in settings where 
𝑝𝑝 is too large to apply best subset selection

 Like forward stepwise selection, backward stepwise selection is not guaranteed 
to yield the best model containing a subset of the p predictors

 Backward selection requires that the number of samples 𝑛𝑛 is larger than the 
number of variables 𝑝𝑝 (so that the full model can be fit). In contrast, forward 
stepwise can be used even when 𝑛𝑛 < 𝑝𝑝, and so is the only viable subset method 
when 𝑝𝑝 is very large
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Choosing the Optimal Model
 The model containing all of the predictors will always have the smallest RSS 

and the largest 𝑅𝑅2, since these quantities are related to the training error
 We wish to choose a model with low test error, not a model with low training error. Recall 

that training error is usually a poor estimate of test error
 Therefore, RSS and 𝑅𝑅2 are not suitable for selecting the best model among a collection of 

models with different numbers of predictors

 We illustrate both approaches next
 We can indirectly estimate test error by making an adjustment to the training error to 

account for the bias due to overfitting
 We can directly estimate the test error, using either a validation set approach or a cross-

validation approach, as discussed in previous lectures

17

https://stats.stackexchange.com/questions/167827/why-is-sum-of-squared-residuals-non-increasing-when-adding-explanatory-variable


𝐶𝐶𝑝𝑝, AIC, BIC, and Adjusted 𝑅𝑅2

 These techniques adjust the training error for the model size, and can be used 
to select among a set of models with different numbers of variables

 The next figure displays 𝐶𝐶𝑝𝑝, BIC, and adjusted 𝑅𝑅2 for the best model of each 
size produced by best subset selection on the Credit data set
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Credit data example
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Details on 𝐶𝐶𝑝𝑝 and AIC
 Mallow’s 𝐶𝐶𝑝𝑝 for estimated test MSE (for least square model):

𝐶𝐶𝑝𝑝 =
1
𝑛𝑛 (𝑅𝑅𝑅𝑅𝑅𝑅 + 2𝑑𝑑 �𝜎𝜎2)

 where 𝑑𝑑 is the total # of parameters used and �𝜎𝜎2 is an estimate of the variance of the error  
𝜖𝜖 associated with each response measurement based on model containing all predictors

 The AIC (Akaike Information Criterion) is defined for a large class of models 
fit by maximum likelihood:

𝐴𝐴𝐴𝐴𝐴𝐴 = −2 log 𝐿𝐿 + 2 � 𝑑𝑑 =
1
𝑛𝑛 (𝑅𝑅𝑅𝑅𝑅𝑅 + 2𝑑𝑑 �𝜎𝜎2)

 Where 𝐿𝐿 is the maximized value of the likelihood function for the estimated model
 In the case of the linear model with Gaussian errors, maximum likelihood and least squares 

are the same thing, and 𝐶𝐶𝑝𝑝 and AIC are equivalent
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Details on BIC
 Despite its similarity with AIC, BIC (Bayesian information criterion) is 

motivated in quite a different way. It arises in the Bayesian approach to model 
selection

𝐵𝐵𝐵𝐵𝐵𝐵 = −2 log 𝐿𝐿 + log(𝑛𝑛)𝑑𝑑 =
1
𝑛𝑛 (𝑅𝑅𝑅𝑅𝑅𝑅 + log(𝑛𝑛)𝑑𝑑 �𝜎𝜎2)

 Like 𝐶𝐶𝑝𝑝, the BIC will tend to take on a small value for a model with a low test error, and so 
generally we select the model that has the lowest BIC value

 Notice that BIC replaces the 2𝑑𝑑 �𝜎𝜎2 used by 𝐶𝐶𝑝𝑝 with a log(𝑛𝑛)𝑑𝑑 �𝜎𝜎2 term, where 𝑛𝑛 is the 
number of observations

 Since log𝑛𝑛 > 2 for any 𝑛𝑛 > 7, the BIC statistic generally places a heavier penalty on 
models with many variables, and hence results in the selection of smaller models than 𝐶𝐶𝑝𝑝
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Adjusted 𝑅𝑅2

 For a least squares model with d variables, the adjusted 𝑅𝑅2 statistic is 
calculated as

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅2 = 1 −
𝑅𝑅𝑅𝑅𝑅𝑅/(𝑛𝑛 − 𝑑𝑑 − 1)
𝑇𝑇𝑇𝑇𝑇𝑇/(𝑛𝑛 − 1)

where TSS= ∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − �𝑦𝑦)2 = ∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖)2 + ∑𝑖𝑖=1𝑛𝑛 ( �𝑦𝑦𝑖𝑖 − �𝑦𝑦)2 is the total sum of squares
 Unlike 𝐶𝐶𝑝𝑝, AIC, and BIC, for which a small value indicates a model with a low test error, a 

large value of adjusted 𝑅𝑅2 indicates a model with a small test error

 Maximizing the adjusted 𝑅𝑅2 is equivalent to minimizing 𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛−𝑑𝑑−1

. While RSS always 

decreases as the number of variables in the model increases, 𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛−𝑑𝑑−1

may increase or 
decrease, due to the presence of 𝑑𝑑 in the denominator

 Unlike the 𝑅𝑅2 statistic, the adjusted 𝑅𝑅2 statistic pays a price for the inclusion of 
unnecessary variables in the model
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Validation and cross-validation
 Each of the procedures returns a sequence of models 𝑀𝑀𝑘𝑘 indexed by model size 
𝑘𝑘 = 0,1,2 … . Our job here is to select �𝑘𝑘. Once selected, we return model 𝑀𝑀�𝑘𝑘
 We compute the validation set error or the cross-validation error for each model 𝑀𝑀𝑘𝑘 under 

consideration, and then select the 𝑘𝑘 for which the resulting estimated test error is smallest
 This procedure has an advantage relative to AIC, BIC, 𝐶𝐶𝑝𝑝, and adjusted 𝑅𝑅2, in that it 

provides a direct estimate of the test error, and doesn’t require an estimate of the error 
variance 𝜎𝜎2

 It can also be used in a wider range of model selection tasks, even in cases where it is hard 
to pinpoint the model degrees of freedom (e.g. the number of predictors in the model) or 
hard to estimate the error variance 𝜎𝜎2
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Credit data example
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Details of Previous Figure
 The validation errors were calculated by randomly selecting three-quarters of 

the observations as the training set, and the remainder as the validation set
 The cross-validation errors were computed using 𝑘𝑘 = 10 folds. In this case, the 

validation and cross-validation methods both result in a six-variable model.
 However, all three approaches suggest that the four-, five-, and six-variable 

models are roughly equivalent in terms of their test errors
 In this setting, we can select a model using the one-standard-error rule. We first 

calculate the standard error of the estimated test MSE for each model size, and 
then select the smallest model for which the estimated test error is within one 
standard error of the lowest point on the curve
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Shrinkage Methods
 Here we will discuss about Ridge regression and Lasso 
 The subset selection methods use least squares to fit a linear model that contains a subset of 

the predictors
 As an alternative, we can fit a model containing all 𝑝𝑝 predictors using a technique that 

constrains or regularizes the coefficient estimates, or equivalently, that shrinks the 
coefficient estimates towards zero

 It may not be immediately obvious why such a constraint should improve the fit, but it 
turns out that shrinking the coefficient estimates can significantly reduce their variance
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Ridge regression
 Recall that the least squares fitting procedure estimates 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝 using the 

values that minimize

𝑅𝑅𝑅𝑅𝑅𝑅 = �
𝑖𝑖=1

𝑛𝑛

(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖)2

 In contrast, the ridge regression coefficient estimates 𝛽̂𝛽𝑅𝑅 are the values that 
minimize

�
𝑖𝑖=1

𝑛𝑛

(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖)2 + λ�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗2 = 𝑅𝑅𝑅𝑅𝑅𝑅 + λ�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗2

where λ ≥ 0 is a tuning parameter, to be determined separately
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Ridge regression: continued
 As with least squares, ridge regression seeks coefficient estimates that fit the 

data well, by making the RSS small
 However, the second term, λ∑𝑗𝑗 𝛽𝛽𝑗𝑗2 , called a shrinkage penalty, is small when 
𝛽𝛽1, … ,𝛽𝛽𝑝𝑝 are close to zero, and so it has the effect of shrinking the estimates of 
𝛽𝛽𝑗𝑗 towards zero

 The tuning parameter λ serves to control the relative impact of these two terms 
on the regression coefficient estimates

 Selecting a good λ value for  is critical; cross-validation is used for this
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Credit data example
 10 variables
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Details of Previous Figure
 In the left-hand panel, each curve corresponds to the ridge regression 

coefficient estimate for one of the ten variables, plotted as a function of λ
 The right-hand panel displays the same ridge coefficient estimates as the left-

hand panel, but instead of displaying on the x-axis, we now display 
�𝛽̂𝛽λ

𝑅𝑅
2 𝛽̂𝛽 2 ,where 𝛽̂𝛽 denotes the vector of least squares coefficient estimates

 The notation 𝛽𝛽 2 denotes the 𝑙𝑙2 norm (pronounced “ell 2”) of a vector, and is 

defined as 𝛽𝛽 2 = ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2
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Ridge regression: scaling of predictors
 The standard least squares coefficient estimates are scale equivalent: 

multiplying 𝑋𝑋𝑗𝑗 by a constant 𝑐𝑐 simply leads to a scaling of the least squares 
coefficient estimates by a factor of 1/𝑐𝑐. In other words, regardless of how the 
𝑗𝑗th predictor is scaled, 𝑋𝑋𝑗𝑗𝛽̂𝛽𝑗𝑗 will remain the same

 In contrast, the ridge regression coefficient estimates can change substantially 
when multiplying a given predictor by a constant, due to the sum of squared 
coefficients term in the penalty part of the ridge regression objective function

 Therefore, it is best to apply ridge regression after standardizing the predictors, 
using the formula (Same for the PLS in the following slides)

�𝑥𝑥𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑖𝑖

1
𝑛𝑛∑𝑖𝑖=1

𝑛𝑛 (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑗𝑗)2
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Why Does Ridge Regression Improve Over Least Squares?

 The Bias-Variance tradeoff
 Simulated data with 𝑛𝑛 = 50 observations, 𝑝𝑝 = 45 predictors, all having nonzero 

coefficients. Squared bias (black), variance (green), and test mean squared error (purple) 
for the ridge regression predictions on a simulated data set, as a function of λ and 

�𝛽̂𝛽λ
𝑅𝑅

2 𝛽̂𝛽 2. The horizontal dashed lines indicate the minimum possible MSE. The 
purple crosses indicate the ridge regression models for which the MSE is smallest
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The Lasso (Least Absolute Shrinkage and Selection Operator)
 Ridge regression does have one obvious disadvantage: unlike subset selection, 

which will generally select models that involve just a subset of the variables, 
ridge regression will include all 𝑝𝑝 predictors in the final model

 The Lasso is a relatively recent alternative to ridge regression that overcomes 
this disadvantage. The lasso coefficients, 𝛽̂𝛽λ

𝐿𝐿, minimize the quantity

�
𝑖𝑖=1

𝑛𝑛

(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖)2 + λ�
𝑗𝑗=1

𝑝𝑝

|𝛽𝛽𝑗𝑗| = 𝑅𝑅𝑅𝑅𝑅𝑅 + λ�
𝑗𝑗=1

𝑝𝑝

|𝛽𝛽𝑗𝑗|

In statistical parlance, the lasso uses an 𝑙𝑙1 norm (pronounced “ell 1”) penalty instead of an 𝑙𝑙2
penalty. The 𝑙𝑙1 norm of a coefficient vector 𝛽𝛽 is given by 𝛽𝛽 1 = ∑ |𝛽𝛽𝑗𝑗|
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The Lasso: continued
 As with ridge regression, the lasso shrinks the coefficient estimates towards 

zero
 However, in the case of the lasso, the 𝑙𝑙1 penalty has the effect of forcing some 

of the coefficient estimates to be exactly equal to zero when the tuning 
parameter λ is sufficiently large. Hence, much like best subset selection, the 
lasso performs variable selection

 We say that the lasso yields sparse models - that is, models that involve only a 
subset of the variables

 As in ridge regression, selecting a good value of λ for the lasso is critical; 
cross-validation is again the method of choice
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Example: Credit dataset
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The Variable Selection Property of the Lasso
 Why is it that the lasso, unlike ridge regression, results in coefficient estimates 

that are exactly equal to zero?
 One can show that the lasso and ridge regression coefficient estimates solve the 

problems
min
𝛽𝛽

∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖)2 subject to ∑𝑗𝑗=1

𝑝𝑝 |𝛽𝛽𝑗𝑗| ≤ 𝑠𝑠

and
min
𝛽𝛽

∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖)2 subject to ∑𝑗𝑗=1

𝑝𝑝 𝛽𝛽𝑗𝑗2 ≤ 𝑠𝑠

Respectively
 The best subset selection can be viewed as

min
𝛽𝛽

∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖)2 subject to ∑𝑗𝑗=1

𝑝𝑝 𝐼𝐼(𝛽𝛽𝑗𝑗 ≠ 0) ≤ 𝑠𝑠

 Solving above formula is, however, computationally infeasible
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The Lasso Picture
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More about intuition
 Consider 𝑋𝑋 is a square diagonal matrix with its diagonal element equals to 1 

and we omit the intercept for simplicity
 The least squares problem in this case is to minimized ∑𝑗𝑗=1

𝑝𝑝 (𝑦𝑦𝑗𝑗 − 𝛽𝛽𝑗𝑗)2 → 𝛽̂𝛽𝑗𝑗 = 𝑦𝑦𝑗𝑗
 Ridge regression: ∑𝑗𝑗=1

𝑝𝑝 (𝑦𝑦𝑗𝑗 − 𝛽𝛽𝑗𝑗)2 + λ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2 → 𝛽̂𝛽𝑗𝑗𝑅𝑅 = 𝑦𝑦𝑗𝑗/(1 + λ)

 Lasso: ∑𝑗𝑗=1
𝑝𝑝 (𝑦𝑦𝑗𝑗 − 𝛽𝛽𝑗𝑗)2 + λ∑𝑗𝑗=1

𝑝𝑝 |𝛽𝛽𝑗𝑗| → 𝛽̂𝛽𝑗𝑗𝐿𝐿 = �
𝑦𝑦𝑗𝑗 − ⁄λ 2 𝑖𝑖𝑖𝑖 𝑦𝑦𝑗𝑗 > ⁄λ 2
𝑦𝑦𝑗𝑗 + ⁄λ 2 𝑖𝑖𝑖𝑖 𝑦𝑦𝑗𝑗 < − ⁄λ 2

0 𝑖𝑖𝑖𝑖 |𝑦𝑦𝑗𝑗| ≤ ⁄λ 2
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More about intuition
 Left: The ridge regression coefficient estimates are shrunken proportionally 

towards zero, relative to the least squares estimates. Right: The lasso 
coefficient estimates are soft-thresholded towards zero. In the case of a more 
general data matrix 𝑋𝑋 the main ideas still hold approximately
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Bayesian interpretation
𝑝𝑝 𝛽𝛽 𝑋𝑋,𝑌𝑌 ∝ 𝑓𝑓 𝑌𝑌 𝑋𝑋,𝛽𝛽 𝑝𝑝 𝛽𝛽 𝑋𝑋

 We assume that 𝑝𝑝 𝛽𝛽|𝑋𝑋 = ∏𝑗𝑗=1
𝑝𝑝 𝑔𝑔(𝛽𝛽𝑗𝑗) , for some density function 𝑔𝑔

 If 𝑔𝑔 is a Gaussian distribution with mean zero and standard deviation a function of 𝜆𝜆, then 
it follows that the posterior mode for 𝛽𝛽—that posterior is, the most likely value for 𝛽𝛽, 
given the data—is given by the ridge mode regression solution

 If 𝑔𝑔 is a double-exponential (Laplace) distribution with mean zero and scale parameter a 
function of 𝜆𝜆, then it follows that the posterior mode for 𝛽𝛽 is the lasso solution
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Comparing the Lasso and Ridge Regression
 Left: Plots of squared bias (black), variance (green), and test MSE (purple) for 

the lasso on simulated data set of Slide 32. Right: Comparison of squared bias, 
variance and test MSE between lasso (solid) and ridge (dashed). Both are 
plotted against their 𝑅𝑅2 on the training data, as a common form of indexing. 
The crosses in both plots indicate the lasso model for which the MSE is 
smallest
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Comparing the Lasso and Ridge Regression: continued
 Left: Plots of squared bias (black), variance (green), and test MSE (purple) for 

the lasso. The simulated data is similar to that in Slide 32, except that now only 
two predictors are related to the response. Right: Comparison of squared bias, 
variance and test MSE between lasso (solid) and ridge (dashed). Both are 
plotted against their 𝑅𝑅2 on the training data, as a common form of indexing. 
The crosses in both plots indicate the lasso model for which the MSE is 
smallest
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Short Conclusions
 These two examples illustrate that neither ridge regression nor the lasso will 

universally dominate the other
 In general, one might expect the lasso to perform better when the response is a 

function of only a relatively small number of predictors
 However, the number of predictors that is related to the response is never 

known a priori for real data sets
 A technique such as cross-validation can be used in order to determine which 

approach is better on a particular data set
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Selecting the Tuning Parameter for Ridge Regression and Lasso
 As for subset selection, for ridge regression and lasso we require a method to 

determine which of the models under consideration is best
 That is, we require a method selecting a value for the tuning parameter λ or 

equivalently, the value of the constraint 𝑠𝑠
 Cross-validation provides a simple way to tackle this problem. We choose a 

grid of λ values, and compute the cross-validation error rate for each value of λ.
 We then select the tuning parameter value for which the cross-validation error 

is smallest
 Finally, the model is re-fit using all of the available observations and the 

selected value of the tuning parameter
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Credit data example
 Left: Cross-validation errors that result from applying ridge regression to the 

Credit data set with various values of λ
 Right: The coefficient estimates as a function of λ. The vertical dashed lines 

indicates the value of λ selected by cross-validation

45



Simulated data example
 Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse 

simulated data set from Slide 42. Right: The corresponding lasso coefficient 
estimates are displayed. The vertical dashed lines indicate the lasso fit for 
which the cross-validation error is smallest
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Dimension Reduction Methods
 The methods that we have discussed so far in this chapter have involved fitting 

linear regression models, via least squares or a shrunken approach, using the 
original predictors, 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝

 We now explore a class of approaches that transform the predictors and then fit 
a least squares model using the transformed variables. We will refer to these 
techniques as dimension reduction methods
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Dimension Reduction Methods: details
 Let 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑀𝑀 represent 𝑀𝑀 < 𝑝𝑝 linear combinations of our original 𝑝𝑝

predictors. That is,
𝑍𝑍𝑚𝑚 = ∑𝐽𝐽=1

𝑝𝑝 Φ𝑚𝑚𝑚𝑚 𝑋𝑋𝑗𝑗 for some constants Φ𝑚𝑚𝑚, … ,Φ𝑚𝑚𝑚𝑚

 We can then fit the linear regression model using ordinary least squares

𝑦𝑦𝑖𝑖 = 𝜃𝜃0 + �
𝑚𝑚=1

𝑀𝑀

𝜃𝜃𝑚𝑚𝑧𝑧𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛

 Note that in the model, the regression coefficients are given by 𝜃𝜃0,𝜃𝜃1, … ,𝜃𝜃𝑀𝑀. If 
the constants Φ𝑚𝑚𝑚, … ,Φ𝑚𝑚𝑚𝑚 are chosen wisely, then such dimension reduction 
approaches can often outperform OLS regression
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Dimension Reduction Methods: details
 Notice that from definition

�
𝑚𝑚=1

𝑀𝑀

𝜃𝜃𝑚𝑚𝑧𝑧𝑖𝑖𝑖𝑖 = �
𝑚𝑚=1

𝑀𝑀

𝜃𝜃𝑚𝑚�
𝐽𝐽=1

𝑝𝑝

Φ𝑚𝑚𝑚𝑚 𝑥𝑥i𝑗𝑗 = �
𝑗𝑗=1

𝑝𝑝
�
𝑚𝑚=1

𝑀𝑀

𝜃𝜃𝑚𝑚Φ𝑚𝑚𝑚𝑚𝑥𝑥i𝑗𝑗 = �
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗𝑥𝑥i𝑗𝑗

Where 𝛽𝛽𝑗𝑗 = ∑𝑚𝑚=1
𝑀𝑀 𝜃𝜃𝑚𝑚Φ𝑚𝑚𝑚𝑚

 Hence the model can be thought of as a special case of the original linear regression model
 Dimension reduction serves to constrain the estimated 𝛽𝛽𝑗𝑗 coefficients, since now they must 

take the above form
 Can win in the bias-variance tradeoff
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Principal Components Regression
 Here we apply principal components analysis (PCA) (discussed in Chapter 12 

of the text) to define the linear combinations of the predictors, for use in our 
regression
 The first principal component is that (normalized) linear combination of the variables with 

the largest variance
 The second principal component has largest variance, subject to being uncorrelated with 

the first. And so on
 Hence with many correlated original variables, we replace them with a small set of 

principal components that capture their joint variation
 The principal components regression (PCR) approach involves constructing the 

first 𝑀𝑀 principal components, 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑀𝑀, and then using these components 
as the predictors in a linear regression model that is fit using least squares
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Pictures of PCA
 The population size (pop) and ad spending (ad) for 100 different cities are 

shown as purple circles. The green solid line indicates the first principal 
component, and the blue dashed line indicates the second principal component
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Pictures of PCA: continued
 A subset of the advertising data. Left: The first principal component, chosen to 

minimize the sum of the squared perpendicular distances to each point, is 
shown in green. These distances are represented using the black dashed line 
segments. Right: The left-hand panel has been rotated so that the first principal 
component lies on the 𝑥𝑥-axis
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Pictures of PCA: continued
 Plots of the first principal component scores 𝑧𝑧𝑖𝑖1 versus pop and ad. The 

relationships are strong

 Plots of the second principal component scores 𝑧𝑧𝑖𝑖2 versus pop and ad. The 
relationships are weak
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Application to Principal Components Regression
 PCR was applied to two simulated data sets. The black, green, and purple lines 

correspond to squared bias, variance, and test mean squared error, respectively. 
Left: Simulated data from slide 32. Right: Simulated data from slide 42

54
𝑛𝑛 = 50
𝑝𝑝 = 45 significant predictors

𝑛𝑛 = 50
𝑝𝑝 = 2 significant predictors



Application to Principal Components Regression
 PCR, ridge regression, and the lasso were applied to a simulated data set in 

which the first five principal components of 𝑋𝑋 contain all the information about 
the response 𝑌𝑌
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Choosing the number of directions 𝑀𝑀
 Left: PCR standardized coefficient estimates on the Credit data set for different 

values of 𝑀𝑀. Right: The 10-fold cross validation MSE obtained using PCR, as 
a function of 𝑀𝑀
 Note that we also standardizing each predictor before PCR
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Partial Least Squares
 PCR (dotted line) identifies linear combinations, or directions, that best 

represent the predictors 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝
 These directions are identified in an unsupervised way, since the response 𝑌𝑌 is not used to 

help determine the principal component directions
 That is, the response does not supervise the identification of the principal components
 Consequently, PCR suffers from a potentially serious drawback: there is no guarantee that 

the directions that best explain the predictors will also be the best directions to use for 
predicting the response
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Partial Least Squares: continued
 Like PCR, PLS is a dimension reduction method, which first identifies a new 

set of features 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑀𝑀 that are linear combinations of the original 
features, and then fits a linear model via OLS using these 𝑀𝑀 new features

 But unlike PCR, PLS identifies these new features in a supervised way - that is, 
it makes use of the response 𝑌𝑌 in order to identify new features that not only 
approximate the old features well, but also that are related to the response

 Roughly speaking, the PLS approach attempts to find directions that help 
explain both the response and the predictors
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Details of Partial Least Squares
 After standardizing the 𝑝𝑝 predictors, PLS computes the first direction 𝑍𝑍1 by 

setting Φ1𝑗𝑗 equal to the coefficient from the simple linear regression of 𝑌𝑌 on 𝑋𝑋𝑗𝑗
 One can show that this coefficient is proportional to the correlation between 𝑌𝑌 and 𝑋𝑋𝑗𝑗
 Hence, in computing 𝑍𝑍1 = ∑𝑗𝑗=1

𝑝𝑝 Φ1𝑗𝑗 𝑋𝑋𝑗𝑗 PLS places the highest weight on the variables that 
are most strongly related to the response

 Subsequent directions are found by taking residuals and then repeating the above 
prescription
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Consideration in high dimensions
 Left: Least squares regression in the low-dimensional setting. Right: Least 

squares regression with 𝑛𝑛 = 2 observations and two parameters to be estimated 
(an intercept and a coefficient)
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Consideration in high dimensions
 On a simulated example with 𝑛𝑛 = 20 training observations, features that are 

completely unrelated to the outcome are added to the model
 Left: The 𝑅𝑅2 increases to 1 as more features are included. Center: The training set MSE 

decreases to 0 as more features are included. Right: The test set MSE increases as more 
features are included

 This indicates the importance of always evaluating model performance on an independent 
test set
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 The lasso was performed with 𝑛𝑛 = 100 observations and three values of 𝑝𝑝, the 
number of features. Of the 𝑝𝑝 features, 20 were associated with the response. 
The boxplots show the test MSEs that result using three different values of the 
tuning parameter

1. Regularization or shrinkage plays a key role in high-dimensional problems
2. Appropriate tuning parameter selection is crucial for good predictive performance
3. The test error tends to increase as the dimensionality of the problem (i.e. the number of 

features or predictors) increases, unless the additional features are truly associated with 
the response62



Summary
 Model selection methods are an essential tool for data analysis, especially for 

big datasets involving many predictors
 Research into methods that give sparsity, such as the lasso is an especially hot 

area
 We should be careful when interpreting results in high dimensions
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Appendix
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Deviance
 The deviance for a model 𝑀𝑀0 with estimates 𝜇̂𝜇 based on a dataset 𝑦𝑦, is

𝐷𝐷 𝑦𝑦, �𝜇𝜇 = −2 log 𝑝𝑝 𝑦𝑦 �𝜃𝜃0 − log 𝑝𝑝 𝑦𝑦 �𝜃𝜃𝑠𝑠
 �𝜃𝜃0 denotes the fitted values of the parameters in the model 𝑀𝑀0

 �𝜃𝜃𝑠𝑠 denotes the fitted parameters for the saturated model
 The saturated model is a model with a parameter for every observation so that 

the data are fitted exactly
 𝐷𝐷 𝑦𝑦, 𝜇̂𝜇 = −2 × (the log-likelihood ratio of the reduced model compared to the 

full model)
 The deviance is used to compare two models. In the case of generalized linear 

models (GLM) where it has a similar role to residual variance from ANOVA in 
linear models (RSS)
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Review of Covariance Matrix
 Let 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 be length-𝑝𝑝 observation vectors

𝑥𝑥𝑖𝑖 =

𝑥𝑥𝑖𝑖𝑖
𝑥𝑥𝑖𝑖𝑖
⋮
𝑥𝑥𝑖𝑖𝑖𝑖

 Without Loss Of Generality (WLOG), let their mean be length-𝑝𝑝 0-vector
 Let the data matrix 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) be a 𝑝𝑝 by 𝑛𝑛 matrix
 The sample covariance matrix

𝑆𝑆 = ⁄𝑋𝑋𝑋𝑋𝑇𝑇 (𝑛𝑛 − 1) = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇/(𝑛𝑛 − 1) = �
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑇𝑇 /(𝑛𝑛 − 1)
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Review of  eigenvalue decomposition- Maximum variance 
formulation 
 Find a direction vector 𝑢𝑢1 ∈ 𝑅𝑅𝑝𝑝 and 𝑢𝑢1𝑇𝑇𝑢𝑢1 = 1 such that the variance of the 

projected data is maximized
1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 (𝑢𝑢1𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑢𝑢1𝑇𝑇𝑥̅𝑥)2 = 𝑢𝑢1𝑇𝑇𝑆𝑆𝑢𝑢1

 To enforce the constraint, we introduce a  Lagrange multiplier denoted by λ1 and get the 
unconstrained maximization of 

𝑢𝑢1𝑇𝑇𝑆𝑆𝑢𝑢1 + λ1(1 − 𝑢𝑢1𝑇𝑇𝑢𝑢1) or maximize 𝑢𝑢
𝑇𝑇𝑆𝑆𝑆𝑆
𝑢𝑢𝑇𝑇𝑢𝑢

 By setting the derivative with respect to 𝑢𝑢1 equal to zero, we see that this quantity will 
have a stationary point when 

𝑆𝑆𝑢𝑢1 = λ1𝑢𝑢1
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Review of  eigenvalue decomposition- Maximum variance 
formulation 
 𝑢𝑢1 must be an eigenvector of 𝑆𝑆, if we left-multiply by 𝑢𝑢1𝑇𝑇 we get

𝑢𝑢1𝑇𝑇𝑆𝑆𝑢𝑢1 = λ1
 and so the variance will be a maximum when we set 𝑢𝑢1 equal to the eigenvector having the 

largest eigenvalue λ1. This eigenvector is known as the first principal component.

 We can define additional principal components in an incremental fashion by 
choosing each new direction to be that which maximizes the projected variance 
amongst all possible directions orthogonal to those already considered.
 In a 𝑟𝑟-dimensional projection space, we now consider the optimal linear projection for which 

the variance of the projected data is maximized is defined by the 𝑟𝑟 eigenvectors 𝑢𝑢1, … ,𝑢𝑢𝑟𝑟 of 
the data covariance matrix S corresponding to the 𝑟𝑟 largest eigenvalues λ1, … , λ𝑟𝑟. 
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Principal Component Analysis (PCA)  (1/2)
 If we collect eigenvectors and eigenvalues into matrix

𝑆𝑆𝑝𝑝×𝑝𝑝𝑈𝑈𝑝𝑝×𝑝𝑝 = 𝑈𝑈𝑝𝑝×𝑝𝑝Λ𝑝𝑝×𝑝𝑝
𝑆𝑆𝑝𝑝×𝑝𝑝 = 𝑈𝑈𝑝𝑝×𝑝𝑝Λ𝑝𝑝×𝑝𝑝𝑈𝑈𝑝𝑝×𝑝𝑝

𝑇𝑇

 Note 𝑋𝑋 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇
 Scores are 𝑈𝑈𝑇𝑇𝑋𝑋 = 𝑆𝑆𝑉𝑉𝑇𝑇

 It is equivalent to Minimum error formulation

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝜖𝜖 𝑂𝑂𝑝𝑝,𝑟𝑟 �
𝑖𝑖=1

𝑛𝑛

|(𝑋𝑋𝑖𝑖 − �𝑋𝑋) − 𝑈𝑈𝑈𝑈𝑇𝑇(𝑋𝑋𝑖𝑖 − �𝑋𝑋))|𝐹𝐹2

69

Convention 1 Convention 2
𝑈𝑈 Principal component

Principal direction
Loading

Principal axis
Principal direction

𝑈𝑈𝑇𝑇𝑋𝑋 Principal component scores Principal component



Principal Component Analysis (PCA)  (2/2)
 Connection with SVD

S =
𝑋𝑋𝑋𝑋𝑇𝑇

𝑛𝑛 − 1 =
𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇𝑉𝑉𝑉𝑉𝑈𝑈𝑇𝑇

𝑛𝑛 − 1 = 𝑈𝑈
𝐷𝐷2

𝑛𝑛 − 1𝑈𝑈
𝑇𝑇 = 𝑈𝑈Λ𝑈𝑈𝑇𝑇

 In practice, we will often scale data before PCA 

 Whiten data matrix (identity covariance matrix)
 Λ−1/2𝑈𝑈𝑇𝑇X

 ZCA (Close to original data (often not reduce dimension))
 𝑈𝑈Λ−1/2𝑈𝑈𝑇𝑇X
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LAR and group Lasso in ESL
 Least Angle Regression
 https://scikit-learn.org/stable/modules/linear_model.html#least-angle-regression

 Group Lasso
 https://group-lasso.readthedocs.io/en/latest/
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